Abstract Algebra: David S. Dummit and Richard M. Foote

Solutions to exercises from Abstract Algebra by Dummit & Foote. (Not all links are active.)
Chapter 0: Preliminaries
Chapter 1: Introduction to Groups
Chapter 2: Subgroups
Chapter 3: Quotient Groups and Homomorphisms
Chapter 4: Group Actions
Chapter 5: Direct and Semidirect Products and Abelian Groups
Chapter 6: Further Topics in Group Theory
Chapter 7: Introduction to Rings
Chapter 8: Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains
Chapter 9: Polynomial Rings
Chapter 10: Introduction to Module Theory
Chapter 11: Vector Spaces
Chapter 12: Modules over Principal Ideal Domains
Chapter 13: Field Theory
Chapter 14: Galois Theory
Chapter 15: Commutative Rings and Algebraic Geometry
Chapter 16: Artinian Rings, Discrete Valuation Rings, and Dedekind Domains
Chapter 17: Introduction to Homological Algebra and Group Cohomology
Chapter 18: Representation Theory and Character Theory
Chapter 19: Examples and Applications of Character Theory
Appendix I: Cartesian Products and Zorn’s Lemma
Appendix II: Category Theory

Solutions

  • Chapter 0: Preliminaries
    §0.1: Basics
    (#1) (#2) (#3) (#4) (#5) (#6) (#7)
    §0.2: Properties of the Integers
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11)
    §0.3: Z/(n) – The Integers Modulo n
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16)
  • Chapter 1: Introduction to Groups
    §1.1: Basic Axioms and Examples
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36)
    §1.2: Dihedral Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18)
    §1.3: Symmetric Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20)
    §1.4: Matrix Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11)
    §1.5: The Quaternion Group
    (#1) (#2) (#3)
    §1.6: Homomorphisms and Isomorphisms
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26)
    §1.7: Group Actions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23)
  • Chapter 2: Subgroups
    §2.1: Definition and Examples
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17)
    §2.2: Centralizers and Normalizers, Stabilizers and Kernels
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
    §2.3: Cyclic Groups and Cyclic Subgroups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26)
    §2.4: Subgroups Generated by Subsets of a Group
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20)
    §2.5: The Lattice of Subgroups of a Group
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20)
  • Chapter 3: Quotient Groups and Homomorphisms
    §3.1: Definitions and Examples
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43)
    §3.2: More on Cosets and Lagrange’s Theorem
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23)
    §3.3: The Isomorphism Theorems
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10)
    §3.4: Composition Series and the Hölder Program
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12)
    §3.5: Transpositions and the Alternating Group
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17)
  • Chapter 4: Group Actions
    §4.1: Group Actions and Permutation Representations
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10)
    §4.2: Groups Acting on Themselves by Left Multiplication – Cayley’s Theorem
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
    §4.3: Groups Acting on Themselves by Conjugation – The Class Equation
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36)
    §4.4: Automorphisms
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20)
    §4.5: The Sylow Theorems
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43) (#44) (#45) (#46) (#47) (#48) (#49) (#50) (#51) (#52) (#53) (#54) (#55) (#56)
    §4.6: The Simplicity of A_n
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8)
  • Chapter 5: Direct and Semidirect Products and Abelian Groups
    §5.1: Direct Products
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18)
    §5.2: The Fundamental Theorem of Finitely Generated Abelian Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16)
    §5.3: Table of Groups of Small Order
    (#1)
    §5.4: Recognizing Direct Products
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20)
    §5.5: Semidirect Products
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25)
  • Chapter 6: Further Topics in Group Theory
    §6.1: p-Groups, Nilpotent Groups, and Solvable Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38)
    §6.2: Applications in Groups of Medium Order
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30)
    §6.3: A Word on Free Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
  • Chapter 7: Introduction to Rings
    §7.1: Basic Definitions and Examples
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30)
    §7.2: Examples: Polynomial Rings, Matrix Rings, and Group Rings
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13)
    §7.3: Ring Homomorphisms and Quotient Rings
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37)
    §7.4: Properties of Ideals
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41)
    §7.5: Rings of Fractions
    (#1) (#2) (#3) (#4) (#5) (#6)
    §7.6: The Chinese Remainder Theorem
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11)
  • Chapter 8: Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains
    §8.1: Euclidean Domains
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12)
    §8.2: Principal Ideal Domains
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8)
    §8.3: Unique Factorization Domains
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11)
  • Chapter 9: Polynomial Rings
    §9.1: Definitions and Basic Properties
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18)
    §9.2: Polynomial Rings over Fields I
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13)
    §9.3: Polynomial Rings that are Unique Factorization Domains
    (#1) (#2) (#3) (#4) (#5)
    §9.4: Irreducibility Criteria
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20)
    §9.5: Polynomial Rings over Fields II
    (#1) (#2) (#3) (#4) (#5) (#6) (#7)
    §9.6: Polynomials in Several Variables over a Field and Gröbner Bases
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43) (#44) (#45)
  • Chapter 10: Introduction to Module Theory
    §10.1: Basic Definitions and Examples
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23)
    §10.2: Quotient Modules and Module Homomorphisms
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
    §10.3: Generation of Modules, Direct Sums, and Free Modules
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27)
    §10.4: Tensor Products of Modules
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27)
    §10.5: Exact Sequences – Projective, Injective, and Flat Modules
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28)
  • Chapter 11: Vector Spaces
    §11.1: Definitions and Basic Theory
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
    §11.2: The Matrix of a Linear Transformation
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39)
    §11.3: Dual Vector Spaces
    (#1) (#2) (#3) (#4) (#5)
    §11.4: Determinants
    (#1) (#2) (#3) (#4) (#5) (#6)
    §11.5: Tensor Algebras, Symmetric and Exterior Algebras
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
  • Chapter 12: Modules over Principal Ideal Domains
    §12.1: The Basic Theory
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22)
    §12.2: The Rational Canonical Form
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25)
    §12.3: The Jordan Canonical Form
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43) (#44) (#45) (#46) (#47) (#48) (#49) (#50) (#51) (#52) (#53) (#54) (#55) (#56) (#57) (#58) (#59)
  • Chapter 13: Field Theory
    §13.1: Basic Theory of Field Extensions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8)
    §13.2: Algebraic Extensions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22)
    §13.3: Classical Straightedge and Compass Constructions
    (#1) (#2) (#3) (#4) (#5)
    §13.4: Splitting Fields and Algebraic Closures
    (#1) (#2) (#3) (#4) (#5) (#6)
    §13.5: Separable and Inseparabel Extensions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11)
    §13.6: Cyclotomic Polynomials and Extensions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17)
  • Chapter 14: Galois Theory
    §14.1: Basic Definitions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10)
    §14.2: The Fundamental Theorem of Galois Theory
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31)
    §14.3: Finite Fields
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17)
    §14.4: Composite Extensions and Simple Extensions
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8)
    §14.5: Cyclotomic Extensions and Abelian Extensions over \mathbb{Q}
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18)
    §14.6: Galois Groups of Polynomials
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43) (#44) (#45) (#46) (#47) (#48) (#49) (#50) (#51)
    §14.7: Solvable and Radical Extensions: Insolvability of the Quintic
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21)
    §14.8: Computation of Galois Groups over \mathbb{Q}
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10)
    §14.9: Transcendental Extensions, Inseparable Extensions, Infinite Galois Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19)
  • Chapter 15: Commutative Rings and Algebraic Geometry
    §15.1: Noetherian Rings and Affine Algebraic Sets
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43) (#44) (#45) (#46) (#47) (#48)
    §15.2: Radicals and Affine Varieties
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40) (#41) (#42) (#43) (#44) (#45) (#46) (#47) (#48) (#49) (#50) (#51) (#52) (#53) (#54)
    §15.3: Integral Extensions and Hilbert’s Nullstellensatz
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28)
    §15.4: Localization
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35) (#36) (#37) (#38) (#39) (#40)
    §15.5: The Prime Spectrum of a Ring
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31)
  • Chapter 16: Artinian Rings, Discrete Valuation Rings, and Dedekind Domains
    §16.1: Artinian Rings
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14)
    §16.2: Discrete Valuation Rings
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9)
    §16.3: Dedekind Domains
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25)
  • Chapter 17:Introduction to Homological Algebra and Group Cohomology
    §17.1: Introduction to Homological Algebra – Ext and Tor
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28) (#29) (#30) (#31) (#32) (#33) (#34) (#35)
    §17.2: The Cohomology of Groups
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25)
    §17.3: Crossed Homomorphisms and H^1(G,A)
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15)
    §17.4: Group Extensions, Factor Sets, and H^2(G,A)
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10)
  • Chapter 18: Representation Theory and Character Theory
    §18.1: Linear Actions and Modules over Group Rings
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24)
    §18.2: Wedderburn’s Theorem and Some Consequences
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18)
    §18.3: Character Theory and the Orthogonality Relations
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17) (#18) (#19) (#20) (#21) (#22) (#23) (#24) (#25) (#26) (#27) (#28)
  • Chapter 19: Examples and Applications of Character Theory
    §19.1: Characters of Groups of Small Order
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15) (#16) (#17)
    §19.2: Theorems of Burnside and Hall
    (#1) (#2) (#3) (#4) (#5)
    §19.3: Introduction to the Theory of Induced Characters
    (#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#10) (#11) (#12) (#13) (#14) (#15)
  • Appendix I: Cartesian Products and Zorn’s Lemma
  • Appendix II: Category Theory

No comments:

Post a Comment