Characterization of zero divisors and units in ZZ/(n)


Let n \in \mathbb{Z}n > 1, and let a \in \mathbb{Z} with 1 \leq a \leq n. Prove that if a and n are not relatively prime, then there exists an integer b with 1 \leq b < n such that ab = 0 \mod n. Deduce that there cannot exist an integer c such that ac = 1 \mod n.

Suppose \mathsf{gcd}(a,n) = d \neq 1. Then we have db = n for some b, and 1 \leq b < n. Moreover a = md for some m, so that, mod n, we have ab = mdb = mn = 0.
Suppose now that ac = 1 mod n for some c. Then we have, mod n, 0 = 0 \cdot c = a \cdot b \cdot c = a \cdot c \cdot b = 1 \cdot b = b. But then b = 0, a contradiction. So no such c exists.




No comments:

Post a Comment