The powers of a group element of infinite order are pairwise distinct


Let G be a group, and let x \in G be an element of infinite order. Prove that the elements x^k with k \in \mathbb{Z} are all distinct.

Suppose to the contrary that x^a = x^b for some (distinct) integers a and b; without loss of generality say a < b. Then we have x^{b-a} = 1 and 0 < b-a. This is a contradiction since x has infinite order; thus no such a and b exist.




No comments:

Post a Comment