Addition of residue classes of integers is associative


Prove that addition of residue classes in \mathbb{Z}/(n) is associative. (You may assume that it is well defined.)

We have
(\overline{a} + \overline{b}) + \overline{c} = \overline{a+b} + \overline{c}
 = \overline{(a+b)+c}
 = \overline{a+(b+c)}
 = \overline{a} + \overline{b+c}
 = \overline{a} + (\overline{b} + \overline{c}),
since integer addition is associative. \blacksquare





No comments:

Post a Comment