The units in ZZ/(n) are closed under multiplication


Prove that if \overline{a}, \overline{b} \in (\mathbb{Z}/(n))^\times, then \overline{a} \cdot \overline{b} \in (\mathbb{Z}/(n))^\times.

Bars denote arithmetic mod n. Let \overline{a}, \overline{b} \in (\mathbb{Z}/(n))^\times; by the definition of (\mathbb{Z}/(n))^\times, there exist \overline{c} and \overline{d} such that \overline{a} \cdot \overline{c} = \overline{1} and \overline{b} \cdot \overline{d} = \overline{1}. Thus we have (\overline{a} \cdot \overline{b}) \cdot (\overline{d} \cdot \overline{c}) = \overline{a} \cdot \overline{1} \cdot \overline{c} = \overline{1}. Hence \overline{a} \cdot \overline{b} \in (\mathbb{Z}/(n))^\times.




No comments:

Post a Comment