Multiplication of residue classes of integers is associative


Prove that multiplication of residue classes in \mathbb{Z}/(n) is associative. (You may assume that it is well defined.)

We have
(\overline{a} \cdot \overline{b}) \cdot \overline{c} = \overline{a \cdot b} \cdot \overline{c}
 = \overline{(a \cdot b) \cdot c}
 = \overline{a \cdot (b \cdot c)}
 = \overline{a} \cdot \overline{b \cdot c}
 = \overline{a} \cdot (\overline{b} \cdot \overline{c}),
since integer multiplication is associative.





No comments:

Post a Comment