Prove that a given Diophantine equation has no nontrivial solutions


Prove that the equation a^2 + b^2 = 3c^2 has no solutions in nonzero integers ab, and c.

Let S be the set of all nonzero solutions (a,b,c) of the equation a^2 + b^2 = 3c^2. Consider now the set A = \{ a \ |\ (a,b,c) \in S \}; this is a nonempty set of positive integers, and so by the Well Ordering Principle A has a minimal element a_0. Then let (a_0,b_0,c_0) be a solution. We now reduce our arithmetic mod 4. By the previous exercises, a_0^2 + b_0^2 is either 01, or 2 mod 4, and c_0^2 is either 0 or 1 mod 4. But if c_0^2 is 1 mod 4, then we have a_0^2 + b_0^2 = 3 mod 4, a contradiction. So c^2 is 0 mod 4, and thus 2 divides c_0. Moreover, we have a_0^2 + b_0^2 = 0 mod 4, and by a previous example, the only way this can happen is if a^2 = b^2 = 0 mod 4. So 2 divides a_0 and b_0.
Now we can construct a new integer solution (a_0/2, b_0/2, c_0/2) of a^2 + b^2 = 3c^2. However, a_0/2 is strictly less than a_0, violating the minimality of a_0. Hence we have a contradiction, so S is empty.





No comments:

Post a Comment