Compute the units in ZZ/(n)


Conclude from two previous theorems [here and here] that (\mathbb{Z}/(n))^\times is the set of elements \overline{a} \in \mathbb{Z}/(n) with \mathsf{gcd}(a,n) = 1. Verify this directly in the case n = 12.

By definition,
(\mathbb{Z}/(n))^\times = \{ \overline{a} \in \mathbb{Z}/(n) \ |\ \overline{a} \cdot \overline{c} = \overline{1} \ \mathrm{for\ some}\ \overline{c} \in \mathbb{Z}/(n) \}.
Suppose \overline{a} \in (\mathbb{Z}/(n))^\times. We must have \mathsf{gcd}(a,n) = 1 since otherwise we have a contradiction. Moreover, if \mathsf{gcd}(a,n) = 1 then there exists \overline{c} \in \mathbb{Z}/(n) such that \overline{a} \cdot \overline{c} = \overline{1}.




No comments:

Post a Comment