A finite direct product of groups is a group under componentwise multiplication


Let A and B be groups. Verify that A \times B is a group under componentwise multiplication; i.e., (a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2).

We need to verify the three group axioms: associativity, identity, and inverses.
  1. Let a_i \in A and b_i \in B for i = 1,2,3. Then we have
    (a_1, b_1) \cdot \left[ (a_2, b_2) \cdot (a_3, b_3) \right] = (a_1, b_1) \cdot (a_2 a_3, b_2 b_3)
     = (a_1 (a_2 a_3), b_1 (b_2 b_3))
     = ((a_1 a_2) a_3, (b_1 b_2) b_3)
     = (a_1 a_2, b_1 b_2) \cdot (a_3, b_3)
     = \left[ (a_1, b_1) \cdot (a_2, b_2) \right] \cdot (a_3, b_3)
    So componentwise multiplication is indeed associative.
  2. Note that for all a \in A and b \in B(a,b) \cdot (1_A, 1_B) = (a \cdot 1_A, b \cdot 1_B) = (a,b). Similarly, (1_A,1_B) \cdot (a,b) = (a,b). So (1_A, 1_B) is an identity element in A \times B.
  3. Let (a,b) \in A \times B. Then a^{-1} \in A and b^{-1} \in B, so that (a^{-1}, b^{-1}) \in A \times B. Moreover we have (a,b) \cdot (a^{-1}, b^{-1}) = (aa^{-1}, bb^{-1}) = (1_A, 1_B). Thus every element of A \times B has an inverse.
So A \times B is indeed a group under componentwise multiplication. \blacksquare





No comments:

Post a Comment