Laws of exponents in a group


Let G be a group, x \in G, and a,b \in \mathbb{Z}^+.
  1. Prove that x^{a+b} = x^a x^b and x^{ab} = (x^a)^b.
  2. Prove that (x^a)^{-1} = x^{-a}.
  3. Prove part (1) when a and b are arbitrary integers.

  1. First we show that x^{a+b} = x^a x^b by induction on b. For the base case, note that x^{a+1} = x^a x for all a. For the inductive step, suppose x^{a+k} = x^a x^k for all a and 1 \leq k \leq b. Then x^{a+(b+1)} = x^{(a+b)+1} = x^{a+b} x = x^a x^b x = x^a x^{b+1}. So by induction, x^{a+b} = x^a x^b for all a and b.We now show that x^{ab} = (x^a)^b by induction on b. For the base case, note that x^{a \cdot 1} = x^a = (x^a)^1 for all a. For the inductive step, suppose x^{ak} = (x^a)^k for all a and 1 \leq k \leq b. Then x^{a(b+1)} = x^{ab + a} = x^{ab}x^a = (x^a)^b x^a = (x^a)^{b+1}. So by induction, x^{ab} = (x^a)^b for all a and b.
  2. We prove this using induction. For the base case a = 1, we have x^1 \cdot x^{-1} = 1, so that x^{-1} = (x^1)^{-1}. For the inductive step, suppose x^{-a} = (x^a)^{-1} for some a \geq 1. Then x^{a+1} x^{-(a+1)} = xx^ax^{-a}x^{-1} = xx^{-1} = 1, using the definition of x^a for negative exponents. Thus x^{-(a+1)} = (x^{a+1})^{-1}. By induction, x^{-a} = (x^a)^{-1} for all a \geq 1.
  3. Part (1) yields the case a,b > 0. Now for all integers a and b, we have x^{a+0} = x^a = x^a x^0 and x^{0+b} = x^b = x^0 x^b. Without loss of generality, two cases remain: a,b < 0 and a > 0 and b < 0. In the first case, we have x^{a+b} = (x^{-b-a})^{-1} = (x^{-b} x^{-a})^{-1} = (x^{-a})^{-1} (x^{-b})^{-1} = x^a x^b. In the second case, we have three subcases: |b| < a|b| = a, and |b| >  a. In the first case, we have a+b > 0. Then x^{a+b} x^{-b} x^{-a} = x^{a+b-b} (x^{a})^{-1} = x^a (x^a)^{-1} = 1, so by the uniqueness of inverses, (x^{a+b})^{-1} = x^{-b} x^{-a} = (x^a x^b)^{-1}. So x^{a+b} = x^a x^b. If |b| = a we have x^{a+b} = x^{a-a} = 0 = x^a x^{-a} = x^a x^{b}. If |b| > a, we have x^{a+b} = (x^{-b-a})^{-1} = (x^{-b} x^{-a})^{-1}  = (x^{-a})^{-1} (x^{-b})^{-1} = x^a x^b. Thus x^{a+b} = x^a x^b for all integers a and b.Next, we show that x^{ab} = (x^a)^b for all integers a and b. If either of a or b is zero, then x^{ab} = (x^a)^b holds trivially. If a > 0 and b > 0, we showed this in part 1. If a > 0 and b < 0, then ab \leq 0. Now x^{ab} = (x^{-1})^{a(-b)} = ((x^{-1})^a)^{-b} = ((x^a)^{-1})^{-b} = (x^a)^b. Similarly if a < 0 and b > 0. If a,b < 0, then x^{ab} = x^{(-a)(-b)} = (x^{-a})^{-b} = (((x^a)^{-1})^{-1})^b = (x^a)^b.




No comments:

Post a Comment