Properties of inverses in a finite cyclic subgroup


Let G be a group and x \in G an element of finite order, say |x| = n.
  1. Prove that if n = 2k+1 is odd and 1 \leq i < n, then x^i \neq x^{-i}.
  2. Prove that if n = 2k is even and 1 \leq i < n, then x^i = x^{-i} if and only if i = k.

We begin with a lemma.
Lemma 1. Let n,k \in \mathbb{Z}^+. If 2 \leq k < n and n|k, then n = k. Proof: We have k = nq for some q \in \mathbb{N}. If q \geq 2, then since 2k \leq 2n, we have k < 2k \leq 2n \leq k, a contradiction. Thus q = 1 and we have k = n\square
Now for the main results.
  1. If x^i = x^{-i} for some 1 \leq i < n, we have x^{2i} = 1 and thus n|2i by a lemma to a previous example. Since n is odd, we have n|i. By the lemma, i = n, a contradiction.
  2. (\Leftarrow) Clearly, if i = k then x^{2i} = 1, so that x^i = x^{-i}(\Rightarrow) Suppose x^i = x^{-i} for some 1 \leq i < n. Then x^{2i} = 1. By the Division Algorithm we have 2i = qn + r for some integers q and r with 0 \leq r  0, we have a contradiction, so that r = 0. Hence 2i = qn. Now we must have q > 0, and since 0 < 2i < 2n we have 0 < qn < 2n and hence q=1. So 2i = 2k and thus i = k.








No comments:

Post a Comment