Powers distribute over products of commuting group elements


Let G be a group and let a,b \in G such that ab = ba. Prove that (ab)^n = a^n b^n for all n \in \mathbb{Z}.

First we prove two technical lemmas.
Lemma 1. If a,b \in G with ab = ba, then a b^n = b^n a for all n \in \mathbb{Z}^+. We proceed by induction on n. The statement is clear for the base case n = 1. Now suppose the statement holds for some integer n \geq 1; then ab^{n+1} = a b^n b = b^n a b = b^n b a = b^{n+1} a. Thus by induction the conclusion holds for all positive integers n\square
Lemma 2. If a,b \in G with ab = ba, then a^m b^n = b^n a^m for all positive integers n and m. We proceed by induction on n. The statement holds for the base case n = 1 by the previous lemma. Now suppose that for some n \geq 1, we have $a^m b^n = b^n a^m$ for all m. Then a^m b^{n+1} = a^m b^n b = b^n a^m b = b^n b a^m = b^{n+1} a^m, using Lemma 1. Thus, by induction, the statement holds for all integers n and m\square
We now move to the main result.
The statement is trivial if n = 0.
We will prove the statement for n > 0 by induction. For the base case n = 1, we have (ab)^1 = ab = a^1 b^1. For the inductive step, suppose that for some positive integer n, we have (ab)^n = a^n b^n for all such a and b. Then (ab)^{n+1} = ab(ab)^n = ab a^n b^n = a a^n b b^n = a^{n+1} b^{n+1}. Thus by induction, we have (ab)^n = a^n b^n for all positive integers n.
Suppose finally that n < 0. Then (ab)^n = ((ab)^{-n})^{-1} = (a^{-n} b^{-n})^{-1} = (b^{-n} a^{-n})^{-1} = a^n b^n\blacksquare





No comments:

Post a Comment