Prove that the distinct equivalence classes in 
 are precisely 
. Use the Division Algorithm.
Clearly
 for each 
. Now let 
. By the Division Algorithm, we have 
 for some 
 with 
. Thus 
.
Finally, note that the
 are distinct as follows. Suppose 
 with 
 and 
. Then 
, so 
 for some 
, giving 
. But we also have 
, and both 
 and 
 are less than 
. So by the uniqueness part of the division algorithm we have 
, hence 
, a contradiction.
Thus the distinct equivalence classes in
 are precisely 
. 
Clearly
Finally, note that the
Thus the distinct equivalence classes in
No comments:
Post a Comment