Characterize the elements of ZZ/(n)


Prove that the distinct equivalence classes in \mathbb{Z}/(n) are precisely \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}. Use the Division Algorithm.

Clearly \overline{k} \in \mathbb{Z}/(n) for each 0 \leq k < n. Now let \overline{a} \in \mathbb{Z}/(n). By the Division Algorithm, we have a = qn + r for some q,r with 0 \leq |r| < n. Thus \overline{a} = \overline{qn+r} = \overline{qn} + \overline{r} = \overline{r}.
Finally, note that the \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} are distinct as follows. Suppose 0 \leq r_1, r_2 < n with r_1 \neq r_2 and \overline{r_1} = \overline{r_2}. Then n|r_2 - r_1, so nk = r_2 - r_1 for some k, giving r_2 = kn + r_1. But we also have r_2 = 0n + r_2, and both |r_1| and |r_2| are less than n. So by the uniqueness part of the division algorithm we have (k,r_1) = (0,r_2), hence r_1 = r_2, a contradiction.
Thus the distinct equivalence classes in \mathbb{Z}/(n) are precisely \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\blacksquare





No comments:

Post a Comment