Characterization of group elements whose square is the identity


Let G be a group and let x \in G. Prove that x^2 = 1 if and only if |x| is either 1 or 2.

(\Rightarrow) Suppose x^2 = 1. Then we have 0 < |x| \leq 2, i.e., |x| is either 1 or 2.
(\Leftarrow) If |x| = 1, then we have x = 1 so that x^2 = 1. If |x| = 2 then x^2 = 1 by definition. So if |x| is 1 or 2, we have x^2 = 1.




No comments:

Post a Comment