Compute the possible residues of odd squares mod 8


Prove that the square of any odd integer always leaves a remainder of 1 when divided by 8.

We need to find the residues of square odd numbers mod 8. The odds mod 8 are precisely \overline{1}\overline{3}\overline{5}, and \overline{7}, and we have \overline{1}^2 = \overline{1}\overline{3}^2 = \overline{9} = \overline{1}\overline{5}^2 = \overline{25} = \overline{1}, and \overline{7}^2 = \overline{49} = \overline{1}.




No comments:

Post a Comment