If two integers are relatively prime, then they are invertible mod each other


Let n \in \mathbb{Z}n > 1, and let a \in \mathbb{Z} with 1 \leq a \leq n. Prove that if a and n are relatively prime then there is an integer c with ac = 1 \mod n.

Suppose a and n satisfy the hypotheses, with \mathsf{gcd}(a,n) = 1. Then there exist integers c and b such that ac + nb = 1. Reducing mod n gives ac = 1 \mod n.





No comments:

Post a Comment