A finite direct product is abelian if and only if each direct factor is abelian

Let A and B be groups. Prove that A \times B is abelian if and only if A and B are abelian.

(\Rightarrow) Suppose a_1, a_2 \in A and b_1, b_2 \in B. Then (a_1 a_2, b_1 b_2) = (a_1, b_1) \cdot (a_2, b_2) = (a_2, b_2) \cdot (a_1, b_1) = (a_2 a_1, b_2 b_1). Since two pairs are equal precisely when their corresponding entries are equal, we have a_1 a_2 = a_2 a_1 and b_1 b_2 = b_2 b_1. Hence A and B are abelian.
(\Leftarrow) Suppose (a_1, b_1), (a_2, b_2) \in A \times B. Then we have (a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2) = (a_2 a_1, b_2 b_1) = (a_2, b_2) \cdot (a_1, b_1). Hence A \times B is abelian.




No comments:

Post a Comment