Exhibit the elements of ZZ/(18) as sets


Write down explicitly all the elements in the residue classes of \mathbb{Z}/(18).

\mathbb{Z}/(18) is as follows.
\{ \{ 18k \ |\ k \in \mathbb{Z} \}, \{ 1+18k \ |\ k \in \mathbb{Z} \}, \{ 2+18k \ |\ k \in \mathbb{Z} \}
\{ 3+18k \ |\ k \in \mathbb{Z} \}, \{ 4+18k \ |\ k \in \mathbb{Z} \}, \{ 5+18k \ |\ k \in \mathbb{Z} \}
\{ 6+18k \ |\ k \in \mathbb{Z} \}, \{ 7+18k \ |\ k \in \mathbb{Z} \}, \{ 8+18k \ |\ k \in \mathbb{Z} \}
\{ 9+18k \ |\ k \in \mathbb{Z} \}, \{ 10+18k \ |\ k \in \mathbb{Z} \}, \{ 11+18k \ |\ k \in \mathbb{Z} \}
\{ 12+18k \ |\ k \in \mathbb{Z} \}, \{ 13+18k \ |\ k \in \mathbb{Z} \}, \{ 14+18k \ |\ k \in \mathbb{Z} \}
\{ 15+18k \ |\ k \in \mathbb{Z} \}, \{ 16+18k \ |\ k \in \mathbb{Z} \}, \{ 17+18k \ |\ k \in \mathbb{Z} \} \}.

No comments:

Post a Comment