The rational numbers with the square root of 2 adjoined form a group


Let G = \{ a+b \sqrt{2} \in \mathbb{R} \ |\ a,b \in \mathbb{Q} \}.
  1. Prove that G is a group under addition.
  2. Prove that the nonzero elements of G are a group under multiplication. (“Rationalize the denominators” to find multiplicative inverses.)

    • Suppose a+b\sqrt{2}, c+d\sqrt{2} \in G. Then (a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+c) + (b+d)\sqrt{2} \in G, since \mathbb{Q} is closed under addition. So G is closed under addition.
    • Addition on G is associative since addition on \mathbb{R} is associative.
    • Notice that 0 = 0 + 0\sqrt{2}, so 0 \in G, and that 0 + z = z + 0 = z for all a+b\sqrt{2} \in G. Thus 0 is an additive identity element of G.
    • Let a+b\sqrt{2} \in G. Then -a - b\sqrt{2} \in G and we have (a+b\sqrt{2}) + (-a -b\sqrt{2}) = (-a-b\sqrt{2}) + (a+b\sqrt{2}) = 0. So every element of G has an additive inverse in G.
    Hence G is a group under addition.
    • Suppose a+b\sqrt{2}, c+d\sqrt{2} \in G. Then (a+b\sqrt{2})(c+d\sqrt{2}) = (ac + 2bd) + (ad + bc) \sqrt{2} \in G, since \mathbb{Q} is closed under addition and multiplication. So G is closed under multiplication.
    • Multiplication on G is associative since multiplication on \mathbb{C} is associative.
    • Notice that 1 = 1 + 0\sqrt{2}, so 1 \in G, and that 1 \cdot z = z \cdot 1 = z for all z \in G. Thus 1 is a multiplicative identity element of G.
    • Let a+b\sqrt{2} \in G, and note that in \mathbb{C}, we have \left( \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2} \sqrt{2} \right) = \frac{1}{a+b\sqrt{2}} \cdot \frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{1}{a+b\sqrt{2}}. Then G is closed under inversion (considered over \mathbb{R}), so that every element of G has a multiplicative inverse in G.
    Hence G \setminus \{0\} is a group under multiplication.




No comments:

Post a Comment