Compute the possible sums of squares mod 4


Prove for any integers a and b that a^2 + b^2 never leaves a remainder of 3 when divided by 4. (Use the previous exercise.)

We need to show that a^2 + b^2 = 3 has no solutions mod 4. By a previous example, there are (without loss of generality) 3 cases for (a^2, b^2) mod 4: (\overline{0},\overline{0})(\overline{1},\overline{0}), and (\overline{1},\overline{1}). So a^2 + b^2 is one of \overline{0}\overline{1}, and \overline{2}.




No comments:

Post a Comment