The complex roots of unity form a multiplicative group


Let G = \{ z \in \mathbb{C} \ |\ z^n = 1 \mathrm{for\ some} n \in \mathbb{Z}^+ \}.
  1. Prove that G is a group under multiplication (called the group of roots of unity in \mathbb{C}).
  2. Prove that G is not a group under addition.

    • First we show that G is closed under multiplication. Suppose x,y \in G. Then there exist n,m \in \mathbb{Z}^+ such that x^n = y^m = 1. Then (xy)^{mn} = (x^n)^m \cdot (y^n)^m = 1 \cdot 1 = 1, so that xy \in G.
    • Multiplication on G is associative since multiplication on \mathbb{C} is associative.
    • Note that 1^1 = 1 so that 1 \in G, and that for all x \in G we have 1 \cdot x = x \cdot 1 = x. So 1 is an identity in G under multiplication.
    • Suppose x \in G with x^n = 1. Then (x^{-1})^n = (x^n)^{-1} = 1^{-1} = 1, so that x^{-1} \in G. Moreover, x \cdot x^{-1} = x^{-1} \cdot x = 1. So every element of G has a multiplicative inverse in G.
    Thus G is a group under multiplication.
  1. Note that (-1)^2 = 1, so that \pm 1 \in G. However -1 + 1 = 0, and 0^k = 0 \neq 1 for all k \in \mathbb{Z}. So G is not closed under addition and thus not a group.




No comments:

Post a Comment