Decide whether or not a given binary operator is commutative


Determine which of the following binary operations are commutative.
  1. The operation \star on \mathbb{Z} defined by a \star b = a-b.
  2. The operation \star on \mathbb{R} defined by a \star b = a+b+ab.
  3. The operation \star on \mathbb{Q} defined by a \star b = \frac{a+b}{5}.
  4. The operation \star on \mathbb{Z} \times \mathbb{Z} defined by
    (a_1,b_1) \star (a_2,b_2) = (a_1 b_2 + b_1 a_2, b_1 b_2).
  5. The operation \star on \mathbb{Q} \setminus \{0\} defined by a \star b = \frac{a}{b}.

  1. Not commutative since 1 \star (-1) = 1 - (-1) = 2 but (-1) \star 1 = -1 - 1 = -2.
  2. Commutative since a \star b = a + b + ab = b + a + ba = b \star a.
  3. Commutative since a \star b = \frac{a+b}{5} = \frac{b+a}{5} = b \star a.
  4. Commutative since
    (a_1,b_1) \star (a_2,b_2) = (a_1 b_2 + b_1 a_2, b_1 b_2)
     = (a_2 b_1 + b_2 a_1, b_2 b_1)
     = (a_2,b_2) \star (a_1,b_1).
  5. Not commutative since 1 \star 2 = \frac{1}{2} but 2 \star 1 = 2.




No comments:

Post a Comment