A group element and its inverse have the same order


Let G be a group and let x \in G. Prove that x and x^{-1} have the same order.

Recall that the order of a group element is either a positive integer or infinity.
Suppose |x| is infinite and that |x^{-1}| = n for some n. Then x^n = x^{-1 \cdot n \cdot -1} = ((x^{-1})^n)^{-1} = 1^{-1} = 1, a contradiction. So if |x| is infinite, |x^{-1}| must also be infinite. Likewise, if |x^{-1}| is infinte, then |(x^{-1})^{-1}| = |x| is also infinite.
Suppose now that |x| = n and |x^{-1}| = m are both finite. Then we have (x^{-1})^n = (x^n)^{-1} = 1^{-1} = 1, so that m \leq n. Likewise, n \leq m. Hence m = n and x and x^{-1} have the same order.




No comments:

Post a Comment