Construct solutions to a particular Diophantine equation from a given solution


Let a, b, N be integers with a,b \neq 0, and let d = \mathsf{gcd}(a,b). Suppose (x_0,y_0) is a solution of the equation ax + by = N. Prove that for any integer t(x_0 + \frac{b}{d} t, y_0 - \frac{a}{d} t) is also a solution of ax + by = N.

Let x_t = x_0 + \frac{b}{d} t and y_t = y_0 - \frac{a}{d} t. Then we have that
a x_t + b y_t = a(x_0 + \frac{b}{d} t) + b(y_0 - \frac{a}{d} t)
 = ax_0 + \frac{ab}{d} t + by_o - \frac{ab}{d} t
 = ax_0 + by_0
 = N.
Thus (x_t,y_t) is a solution of ax + by = N.





No comments:

Post a Comment