The order of a group element is smaller than the cardinality of the group


Let G be a group and x \in G an element of order n < \infty. Prove that the elements 1, x, x^2, \ldots, x^{n-1} are all distinct. Deduce that |x| \leq |G|.

Suppose to the contrary that x^a = x^b for some 0 \leq a < b \leq n-1. Then we have x^{b-a} = 1, with 1 \leq b-a < n. However, recall that n is by definition the least integer k such that x^k = 1, so we have a contradiction. Thus all the x^i0 \leq i \leq n-1, are distinct.
In particular, we have \{ x^i \ |\ 0 \leq i \leq n-1 \} \subseteq G, so that |x| = n \leq |G|.




No comments:

Post a Comment