In a group, subsets which are closed under multiplication and inversion are groups


Let (G, \star) be a group. Show that a nonempty subset H \subseteq G which is closed under \star and inversion is a group under the restriction \overline{\star} of \star to H.

We need to demonstrate that \overline{\star} is a binary operator on H, that \overline{\star} is associative, that an identity element e \in H exists, and that every element has an inverse.
  1. \overline{\star} is a binary operator on H by hypothesis.
  2. \overline{\star} is associative because \star is associative.
  3. Since H is nonempty, there exists some h \in H. Since H is closed under inversion in Gh^{-1} \in H. And since H is closed under \star, we have h \star h^{-1} = 1_G \in H. Moreover, for all x \in H we have x \overline{\star} 1_G = x \star 1_G = x; thus H has an identity element and in fact 1_H = 1_G.
  4. Let x \in H. Then since H is closed under inversion in G we have x^{-1} \in H, and x \overline{\star} x^{-1} = x \star x^{-1} = 1_G = 1_H. Thus every element of H has an inverse.
So H is indeed a group under the restriction of \star.





No comments:

Post a Comment