Compute additive orders in ZZ/(n)


Find the orders of the following elements of the additive group \mathbb{Z}/(36)\overline{1}\overline{2}\overline{6}\overline{9}\overline{10}\overline{12}\overline{-1}\overline{-10}\overline{-18}.

\overline{n}Reasoning|\overline{n}|
\overline{1}36 is the smallest multiple of 1 that is congruent to 0 mod 36.36
\overline{2}36 is the smallest multiple of 2 that is congruent to 0 mod 36.18
\overline{6}Multiples of \overline{6} are \overline{6}\overline{12}\overline{18}\overline{24}\overline{30}\overline{36} = \overline{0}6
\overline{9}Multiples of \overline{9} are \overline{9}\overline{18}\overline{27}\overline{36} = \overline{0}4
\overline{10}Multiples of \overline{10} are \overline{10}\overline{20}\overline{30}\overline{4}\overline{14}\overline{24}\overline{34}\overline{8}\overline{18}\overline{28}\overline{2}\overline{12}\overline{22}\overline{32}\overline{6}\overline{16}\overline{26}\overline{36} = \overline{0}18
\overline{12}Multiples of \overline{12} are \overline{12}\overline{24}\overline{36} = \overline{0}3
\overline{-1}36 is the smallest multiple of -1 that is congruent to 0 mod 36.36
\overline{-10}Multiples of \overline{-10} are \overline{-10} = \overline{26}\overline{16}\overline{6}\overline{32}\overline{22}\overline{12}\overline{2}\overline{28}\overline{18}\overline{8}\overline{34}\overline{24}\overline{14}\overline{4}\overline{30}\overline{20}\overline{10}\overline{0}18
\overline{-18}\overline{-18} + \overline{-18} = \overline{0}2





No comments:

Post a Comment