Compute the order of an element in a direct product of groups


Let A and B be groups and let a \in A and b \in B have finite order. Prove that the elements (a,1) and (1,b) commute in A \times B and deduce that the order of (a,b) is the least common multiple of |a| and |b|.

First we prove a few lemmas.
Lemma 1. If a \in G has finite order, say |a| = n, and a^m = 1, then n|m. Proof: By the division algorithm, there exist unique (q,r) such that 0 \leq r < |n| and m = qn + r. Then we have 1 = a^m = a^{qn + r} = (a^n)^q a^r = a^r. But n is the least positive integer such that a^n = 1; hence r = 0 and we have m = qn. So n|m\square
Lemma 2. If a, b \in G such that ab = ba and \{ a^n \ |\ n \in \mathbb{Z} \} \cap \{ b^n \ |\ n \in \mathbb{Z} \} = \{ 1 \} (i.e., a and b have only trivial powers in common) then |ab| = \mathsf{lcm}(|a|, |b|). Proof: Let |a| = n_1|b| = n_2, and |ab| = m, and let c = \mathsf{lcm}(n_1, n_2). Then using a previous theorem and Lemma 1, we have (ab)^c = a^c b^c = 1 so that m|c. Now since (ab)^m = a^m b^m = 1, we have a^m = b^{-m}. Since a and b have only trivial powers in common, a^m = 1 and b^m = 1, so that n_1 | m and n_2 | m. By the definition of least common multiple, c|m. So c = m\square
Lemma 3. For all n \in \mathbb{Z}(a,b)^n = (a^n, b^n). Proof: We have (a,b)^0 = 1 = (1,1) = (a^0, b^0). We prove the lemma for n > 0 by induction. For the base case n = 1 we have (a,b)^1 = (a,b) = (a^1, b^1). Now suppose the lemma holds for som n \geq 1; then (a,b)^{n+1} = (a,b)^n (a,b) = (a^n,b^n) (a,b) = (a^{n+1}, b^{n+1}). Thus by induction the lemma holds for all positive n. For n < 0, we have (a,b)^n = ((a,b)^{-n})^{-1} = (a^{-n}, b^{-n})^{-1} = (a^n,b^n), and the lemma holds. \square
Now for the main result it suffices to show that under the hypotheses, (a,1) and (1,b) have only the trivial power in common. This follows because (a,1)^n = (a^n,1) and (1,b)^m = (1,b^m) for all n and m, so that (a,1)^n = (1,b)^m implies in particular that a^n = 1 and so (a,1)^n = (1,1). The conclusion follows from Lemma 2. \blacksquare





No comments:

Post a Comment