Determine whether or not a given set of rational numbers is additively closed


Determine which of the following sets are groups under addition:
  1. The set A_1 of rational numbers in lowest terms whose denominators are odd. (Including 0 = 0/1.)
  2. The set A_2 of rational numbers in lowest terms whose denominators are even. (Including 0 = 0/2.)
  3. The set A_3 of rational numbers of absolute value less than 1.
  4. The set A_4 of rational numbers of absolute value at least 1 together with 0.
  5. The set A_5 of rational numbers in lowest terms with denominator 1 or 2.
  6. The set A_6 of rational numbers in lowest terms with denominator 1, 2, or 3.

  1. We show that A_1 is a group under addition.
    • A_1 is closed under addition as follows. If \frac{a}{b}, \frac{c}{d} \in A_1, then b and d are odd. Then bd is odd. Now \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}. This fraction is equal to some other fraction \frac{p}{q} in lowest terms, such that q|bd. Since bd is odd, q must also be odd. So A_1 is closed under addition.
    • Addition on A_1 is associative since addition on all of \mathbb{Q} is associative.
    • We have \frac{0}{1} + \frac{a}{b} = \frac{a}{b} = \frac{a}{b} + \frac{0}{1} for all \frac{a}{b} \in A_1, so that \frac{0}{1} is an identity element under +.
    • Given \frac{a}{b} \in A_1, note that \frac{-a}{b} \in A_1. Since \frac{a}{b} + \frac{-a}{b} = \frac{0}{b} = \frac{0}{1} and \frac{-a}{b} + \frac{a}{b} = \frac{0}{b} = \frac{0}{1}, every element of A_1 has an additive inverse.
    Thus A_1 is a group under addition.
  2. This set is not closed under addition since \frac{1}{6} \in A_2 but \frac{1}{6} + \frac{1}{6} = \frac{1}{3} is not in A_2. Hence A_2 is not a group under addition.
  3. This set is not closed under addition since \frac{1}{2} \in A_3 but \frac{1}{2} + \frac{1}{2} = 1 is not in A_3. Hence A_3 is not a group under addition.
  4. This set is not closed under addition since 2, \frac{-3}{2} \in A_4 but 2 + \frac{-3}{2} = \frac{1}{2} is not in A_4. Hence A_4 is not a group under addition.
  5. We show that A_5 is a group under addition.
    • A_5 is closed under addition as follows. Let \frac{a}{1}, \frac{b}{1}, \frac{c}{2}, \frac{d}{2} be elements of A_5 in lowest terms. Then \frac{a}{1} + \frac{b}{1} = \frac{a+b}{1} is in A_5\frac{c}{2} + \frac{d}{2} = \frac{2c + 2d}{4} = \frac{c+d}{2} is in A_5, and \frac{a}{1} + \frac{c}{2} = \frac{2a+d}{2} is equal to some fraction \frac{p}{q} in lowest terms with q|2; so \frac{p}{q} is in A_5. So A_5 is closed under addition.
    • Addition on A_5 is associative since addition on all of \mathbb{Q} is associative.
    • We have \frac{0}{1} + \frac{a}{b} = \frac{a}{b} = \frac{a}{b} + \frac{0}{1} for all \frac{a}{b} \in A_5, so that \frac{0}{1} is an identity element under +.
    • Given \frac{a}{b} \in A_5, note that \frac{-a}{b} \in A_5. Since \frac{a}{b} + \frac{-a}{b} = \frac{0}{b} = \frac{0}{1} and \frac{-a}{b} + \frac{a}{b} = \frac{0}{b} = \frac{0}{1}, every element of A_5 has an additive inverse.
    Hence A_5 is a group under addition.
  6. This set is not closed under addition since \frac{1}{2}, \frac{1}{3} \in A_6 but \frac{1}{2} + \frac{1}{3} = \frac{5}{6} is not in A_6. Hence A_6 is not a group under addition.





No comments:

Post a Comment