Decide whether or not a given binary operator is associative


Determine which of the following binary operations are associative.
  1. The operation \star on \mathbb{Z} defined by a \star b = a-b.
  2. The operation \star on \mathbb{R} defined by a \star b = a+b+ab.
  3. The operation \star on \mathbb{Q} defined by a \star b = \frac{a+b}{5}.
  4. The operation \star on \mathbb{Z} \times \mathbb{Z} defined by
    (a_1,b_1) \star (a_2,b_2) = (a_1 b_2 + b_1 a_2, b_1 b_2).
  5. The operation \star on \mathbb{Q} \setminus \{0\} defined by a \star b = \frac{a}{b}.

  1. Not associative since (1 \star 1) \star 1 = (1-1)-1 = 0-1 = -1 but 1 \star (1 \star 1) = 1-(1-1) = 1-0 = 1.
  2. Associative since for all a,b,c,
    (a \star b) \star c = (a + b + ab) \star c
     = (a + b + ab) + c + ac + bc + abc
     = a + (b + c + bc) + ab + ac + abc
     = a \star (b + c+ bc)
     = a \star (b \star c)
  3. Not associative since (1 \star 0) \star 2 = \frac{1}{5} \star 2 = \frac{11}{25} but 1 \star (0 \star 2) = 1 \star \frac{2}{5} = \frac{7}{25}.
  4. Associative since for all (a_1,b_1), (a_2,b_2), (a_3,b_3), we have
    (a_1,b_1) \star \left[(a_2, b_2) \star (a_3,b_3) \right] = (a_1,b_1 \star (a_2 b_3 + b_2 a_3, b_2 b_3)
     = (a_1 b_2 b_3 + b_1 a_2 b_3 + b_1 b_2 a_3, b_1 b_2 b_3)
     = (a_1 b_2 + b_1 a_2, b_1 b_2) \star (a_3,b_3)
     = \left[ (a_1,b_1) \star (a_2,b_2) \right] \star (a_3,b_3)
  5. Not associative since (2 \star 1) \star 2 = 2 \star 2 = 1 but 2 \star (1 \star 2) = 2 \star \frac{1}{2} = 4.




No comments:

Post a Comment