Demonstrate that a given relation defined in terms of a surjective function is an equivalence relation


Let f : A \rightarrow B be a surjective map of sets. Prove that the relation \sim on A given by a \sim b iff f(a) = f(b) is an equivalence relation and that the equivalence classes of \sim are precisely the fibers (i.e. the preimages of elements) of f.

First we show that \sim is an equivalence relation.
  1. We have f(a) = f(a) for all a \in A since set equality is reflexive, \sim is reflexive.
  2. Suppose a \sim b. Then f(a) = f(b). Since set equality is symmetric, f(b) = f(a), hence b \sim a. Thus \sim is symmetric.
  3. Suppose a \sim b and b \sim c. Then we have f(a) = f(b) and f(b) = f(c). Since set equality is transitive, we have f(a) = f(c), hence a \sim c. Thus \sim is transitive.
Now we will show that every \sim-equivalence class is the preimage of some element of B and vice versa.
  • Let X be a \sim-equivalence class. Then X is nonempty; choose some x \in X. By definition, then, for all a \in A we have a \in X if and only if a \sim x; that is, f(a) = f(x). Since X was arbitrary, we have that X is the f-preimage of some x \in B for all \sim-equivalence classes X.
  • Let x \in B, and consider f^\star(x), the f-preimage of x. Note that for all a \in A, we have a \in f^\star(x) if and only if f(a) = f(x); that is, a \sim x. Since x was arbitrary, we have that f^\star(x) is a \sim-equivalence class for all x \in B\blacksquare




No comments:

Post a Comment