The inverse of a product is the reversed product of inverses


Let G be a group. Prove that (a_1 \cdot \ldots \cdot a_n)^{-1} = a_n^{-1} \cdot \ldots \cdot a_1^{-1} for all n \in \mathbb{Z}^+ and a_i \in G.

For n = 1, note that for all a_1 \in G we have a_1^{-1} = a_1^{-1}.
Now for n \geq 2 we proceed by induction on n.
For the base case, note that for all a_1, a_2 \in G we have (a_1 \cdot a_2)^{-1} = a_2^{-1} \cdot a_1^{-1} since a_1 \cdot a_2 \cdot a_2^{-1} a_1^{-1} = 1.
For the inductive step, suppose that for some n \geq 2, for all a_i \in G we have (a_1 \cdot \ldots \cdot a_n)^{-1} = a_n^{-1} \cdot \ldots \cdot a_1^{-1}. Then given some a_{n+1} \in G, we have
(a_1 \cdot \ldots \cdot a_n \cdot a_{n+1})^{-1} = \left( (a_1 \cdot \ldots \cdot a_n) \cdot a_{n+1} \right)^{-1}
 = a_{n+1}^{-1} \cdot (a_1 \cdot \ldots \cdot a_n)^{-1}
 = a_{n+1}^{-1} \cdot a_n^{-1} \cdot \ldots \cdot a_1^{-1},
using associativity and the base case where necessary.
Thus by induction, (a_1 \cdot \ldots \cdot a_n)^{-1} = a_n^{-1} \cdot \ldots \cdot a_1^{-1} for all n \in \mathbb{Z}^+ and a_i \in G.





No comments:

Post a Comment