The reals mod the integers are a group


Let G = \{ x \in \mathbb{R} \ |\ 0 \leq x < 1 \} and for x,y \in G let x \star y be the fractional part of x+y (i.e., x \star y = x + y - \lfloor x+y \rfloor). Prove that \star is a well-defined binary operation on G and that G is an abelian group under \star.

Before we begin, note that \lfloor x+n \rfloor = \lfloor x \rfloor + n for all x \in \mathbb{R} and n \in \mathbb{Z} as follows. For all integers k, we have k \leq \lfloor x+n \rfloor iff k \leq x + n iff k-n \leq x iff k \leq \lfloor x \rfloor + n.
  • We first show that \star is well defined. Suppose x,y \in G. There are two cases for \lfloor x+y \rfloor. If \lfloor x+y \rfloor = 0, then we have 0 \leq x+y < 1 and so x \star y \in G. If \lfloor x+y \rfloor = 1, we have x+y \geq 1. But since x,y < 1x+y < 2. Thus x \star y \in G. So \star is indeed a binary operator on G.
  • We now show that \star is associative. To that end, let x,y,z \in G. Then we have the following.
    (x \star y) \star z = (x \star y) + z - \lfloor (x \star y) + z \rfloor
     = x + y - \lfloor x + y \rfloor + z - \lfloor x + y - \lfloor x + y \rfloor + z \rfloor
     = x + y - \lfloor x + y \rfloor + z - \lfloor x + y + z \rfloor + \lfloor x + y \rfloor
     = x + y + z - \lfloor x + y + z \rfloor
     = x + y - \lfloor y + z \rfloor + z - \lfloor x + y + z \rfloor + \lfloor y + z \rfloor
     = x + y + z - \lfloor y + z \rfloor - \lfloor x + y + z - \lfloor y + z \rfloor \rfloor
     = x + (y \star z) - \lfloor x + (y \star z) \rfloor
     = x \star (y \star z).
  • We now show that 0 is the identity element of G under \star. If x \in G, then \lfloor x \rfloor = 0. Thus we have x \star 0 = x + 0 - \lfloor x + 0 \rfloor = x and 0 \star x = 0 + x - \lfloor 0 + x \rfloor = x.
  • We now show that every element has an inverse. If x \neq 0, then 1-x \in G. Then x \star (1-x) = x + (1 - x) - \lfloor x + (1-x) \rfloor = 1 - 1 = 0 and similarly (1-x) \star x = (1 - x) + x - \lfloor (1 - x) + x \rfloor = 1 - 1 = 0. Certainly, if x = 0 then 0 \star 0 = 0.
Thus G is a group under \star.





No comments:

Post a Comment