Characterize the elements of cyclic subgroups

Let G be a group, and let x \in G be an element of finite order; say |x| = n. Use the Division Algorithm to show that any integral power of x is equal to one of the elements in the set A = \{ 1, x, x^2, \ldots, x^{n-1} \}. Conclude that A is precisely the set of distinct elements of the cyclic subgroup of G generated by x.

Let k \in \mathbb{Z}. By the Division Algorithm, there exist unique integers (q,r) such that k = qn + r and 0 \leq r < |n|. Thus x^k = x^{qn + r} = (x^n)^q x^r = x^r, where x^r \in A.
Hence the cyclic subgroup of G generated by x is A; moreover, by a previous result, the elements of A are all distinct.








No comments:

Post a Comment