In a group, the set of powers of a fixed element is a subgroup


Let G be a group and let x \in G. Prove that A = \{ x^n \ |\ n \in \mathbb{Z} \} is a subgroup of G (called the cyclic subgroup of G generated by x).

By a previous exercise, it suffices to show that A is nonempty and that A is closed under multiplication and inverses.
  1. We have x^0 = 1 \in A, so that A is not empty.
  2. Given some x^a, x^b \in A, we have x^a x^b = x^{a+b} \in A by a previous example.
  3. Given some x^a \in A, we have (x^a)^{-1} = x^{-a} \in A by a previous exercise.
Thus A is indeed a subgroup of G.








No comments:

Post a Comment