Compute the number of units in ZZ/(n)


Prove that the number of elements of (\mathbb{Z}/(n))^\times is \varphi(n), where \varphi denotes the Euler totient function.

By a previous theorem, the distinct elements of \mathbb{Z}/(n) are precisely the classes \overline{0}, \overline{1}, \ldots, \overline{n-1}. Recall that (\mathbb{Z}/(n))^\times consists precisely of those residue classes \overline{a} such that there exists \overline{b} with \overline{a} \overline{b} = \overline{1}. If 0 \leq k < n and \overline{k} \in (\mathbb{Z}/(n))^\times, we have b such that kb = qn + 1, and thus kb -qn = 1. In particular, k and n are relatively prime. Conversely, if k and n are relatively prime, then there exist a and b such that ak + bn = 1, and thus \overline{a} \overline{k} = \overline{1}. Hence, the elements of (\mathbb{Z}/(n))^\times are precisely those residue classes whose representatives in the (integer) range [0,n) are relatively prime to n. By definition, there are \varphi(n) of these.




No comments:

Post a Comment