Basic property of inverses of group elements of finite order


Let G be a group and let x \in G. Prove that if |x| = n for some n \in \mathbb{Z}^+, then x^{-1} = x^{n-1}.

We have x \cdot x^{n-1} = x^n = 1, so by the uniquenes of inverses x^{-1} = x^{n-1}.




No comments:

Post a Comment