Characterize a given set of matrices in terms of their entries


Denote by \mathcal{A} the set of all 2×2 matrices with real number entries. Let M = \left[ {1 \atop 0} {1 \atop 1} \right] and let \mathcal{B} = \{ X \in \mathcal{A} \ |\ MX = XM \}.
Find conditions on p, q, r, s which determine precisely when A = \left[ {p \atop r} {q \atop s} \right] \in \mathcal{B}.

Recall that two matrices are equal precisely when their corresponding entries are equal. We have A M = \left[ {p \atop r}{{p+q} \atop {r+s}} \right] and M A = \left[ {{p+r} \atop r}{{q+s} \atop s} \right]; if we demand that these be equal, we get a system of four equations in four unknowns. Namely, (1) p = p+r, (2) p+q = q+s, (3) r = r, and (4) r+s = s.
From (1) or (4) we deduce that r = 0, and from (2) that p = s. Thus an arbitrary element of \mathcal{B} is of the form \left[ {p \atop 0}{q \atop p} \right] for some p,q. Moreover, every matrix of this form is in \mathcal{B}, as is easily verified.





No comments:

Post a Comment