Compute multiplicative orders in ZZ/(36)


Find the orders of the following elements of the multiplicative group (\mathbb{Z}/(36))^\times\overline{1}\overline{-1}\overline{5}\overline{13}\overline{-13}, and \overline{17}.

\overline{n}Reasoning|\overline{n}|
\overline{1}1
\overline{-1}\overline{-1} \cdot \overline{-1} = \overline{1}2
\overline{5}The powers of \overline{5} are \overline{5}\overline{25}\overline{17}\overline{13}\overline{29}, and \overline{1}.6
\overline{13}The powers of \overline{13} are \overline{13}\overline{25}, and \overline{1}.3
\overline{-13}The powers of \overline{-13} are \overline{-13} = \overline{23}\overline{25}\overline{35}\overline{13}\overline{11}, and \overline{1}.6
\overline{17}The powers of \overline{17} are \overline{1}.2





No comments:

Post a Comment