At most finitely many integers have a given Euler totient


Prove that for any given positive integer N there exist at most finitely many integers n with \varphi(n) = N, where \varphi denotes the Euler totient function. Conclude in particular that \varphi(n) tends to infinity as n tends to infinity.

Let N be a positive integer, and let p be the least prime greater than N+1. Let n be an integer such that \varphi(n) = N.
If q \geq p is a prime divisor of n, then n = q^k \cdot m for some k \geq 1 and m with q not dividing m. Then \varphi(n) = \varphi(q^k) \cdot \varphi(m) \geq q-1 \geq p-1 > N, a contradiction. Thus no prime divisor of n is greater than N+1. In particular, the distinct prime divisors of n belong to a finite set; say these primes are p_1, p_2, \ldots, p_m.
Now we can write n = p_1^{a_1} \cdot p_2^{a_2} \cdot \cdots \cdot p_m^{a_m}, for some 0 < a_i, and thus \varphi(n) = \varphi(p_1^{a_1}) \cdot \varphi(p_2^{a_2}) \cdot \cdots \cdot \varphi(p_m^{a_m}). Thus we have \varphi(n) = \Pi_{i=1}^m p_i^{a_i - 1}(p_i - 1). Note that for each prime p_i\varphi(n) \geq p_i^{a_i-1}(p_i - 1) > N for sufficiently large a_i. Thus, for each p_i, there are only finitely many permissible choices for the exponents a_i. So the set of all n with \varphi(n) = N is a subset of a finite set hence finite.
Now for each positive integer N, there is a largest integer n with \varphi(n) = N. Thus as n approaches infinity, so does \varphi(n).





No comments:

Post a Comment