Every finite group of even order contains an element of order 2


Let G be a finite group of even order. Prove that G contains an element of order 2.

Let t(G) be the set \{ g \in G \ |\ g \neq g^{-1} \}.
Note that if g \in t(G), then g^{-1} \in t(G), and by definition g^{-1} \neq g. Now let A = \{ \{ g, g^{-1} \} \ |\ g \in t(G) \}. Clearly t(G) = \bigcup A, and if \alpha = \{ g, g^{-1} \}, \beta = \{ h, h^{-1} \} \in A are distinct then \alpha \cap \beta = \emptyset. So A is a partition of t(G), and |A| must be finite. Thus we have |t(G)| = \sum_{\alpha \in A} |\alpha| = 2k for some positive integer k; in particular, t(G) contains an even number of elements. Moreover, 1 \notin t(G) since 1^{-1} = 1. Now by definition, every nonidentity element of G \setminus t(G) has order 2.
Now we have |G| = |t(G)| + |G \setminus t(G)|. Since 2 divides |G| and |t(G)|, it must also divide |G \setminus t(G)|; hence |G \setminus t(G)| must contain at least two elements, one of them the identity. The other is an element of order 2.




No comments:

Post a Comment