ZZ/(n) is not a group under multiplication


Prove for all n > 1 that \mathbb{Z}/(n) is not a group under multiplication of residue classes.

Note that since n > 1\overline{1} \neq \overline{0}. Now suppose \mathbb{Z}/(n) contains a multiplicative identity element \overline{e}. Then in particular, \overline{e} \cdot \overline{1} = \overline{1} so that \overline{e} = \overline{1}. Note, however, that \overline{0} \cdot \overline{k} = \overline{0} for all k, so that \overline{0} does not have a multiplicative inverse. Hence \mathbb{Z}/(n) is not a group under multiplication.





No comments:

Post a Comment