Compute the order of each element in Dih(6), Dih(8), and Dih(10)


Recall that D_{2n} = \langle r, s \ |\ r^n = s^2 = 1, rs = sr^{-1} \rangle. Compute the order of each element in the following groups.
  1. D_6
  2. D_8
  3. D_{10}

Recall that every element of D_{2n} can be represented uniquely as s^i r^j for some i = 0, 1 and 0 \leq j < n. Moreover, r^i s = s r^{-i} for all 0 \leq i \leq n. From this we deduce that (sr^i)(sr^i) = ssr^{-i}r^i = 1, so that sr^i has order 2 for 0 \leq i \leq n.
  1. For \alpha \in D_6
    \alphaReasoning|\alpha|
    11
    rr \cdot r = r^2
    r^2 \cdot r = r^3 = 1
    3
    r^2r^2 \cdot r^2 = r^4 = r
    r \cdot r^2 = r^3 = 1
    3
    ss \cdot s = 12
    sr2
    sr^22
  2. For \alpha \in D_8
    \alphaReasoning|\alpha|
    11
    rr \cdot r = r^2
    r^2 \cdot r = r^3
    r^3 \cdot r = r^4 = 1
    4
    r^2r^2 \cdot r^2 = r^4 = 12
    r^3r^3 \cdot r^3 = r^6 = r^2
    r^2 \cdot r^3 = r^5 = r
    r \cdot r^3 = r^4 = 1
    4
    ss \cdot s = 12
    sr2
    sr^22
    sr^32
  3. For \alpha \in D_{10}
    \alphaReasoning|\alpha|
    11
    rr \cdot r = r^2
    r^2 \cdot r = r^3
    r^3 \cdot r = r^4
    r^4 \cdot r = r^5 = 1
    5
    r^2r^2 \cdot r^2 = r^4
    r^4 \cdot r^2 = r^6 = r
    r \cdot r^2 = r^3
    r^3 \cdot r^2 = 1
    5
    r^3r^3 \cdot r^3 = r^6 = r
    r \cdot r^3 = r^4
    r^4 \cdot r^3 = r^7 = r^2
    r^2 \cdot r^3 = r^5 = 1
    5
    r^4r^4 \cdot r^4 = r^8 = r^3
    r^3 \cdot r^4 = r^7 = r^2
    r^2 \cdot r^4 = r^6 = r
    r \cdot r^4 = r^5 = 1
    5
    ss \cdot s = 12
    sr2
    sr^22
    sr^32
    sr^42








No comments:

Post a Comment