Find all the elements in Dih(2n), n even, that commute with all other elements


Let n = 2k be even with n \geq 4. Show that z = r^k is an element of order 2 in D_{2n} which commutes with all elements of D_{2n}. Show also that z is the only nonidentity element of D_{2n} which commutes with all of D_{2n}. [cf. §1.1 #33.]

Note that r^k \cdot r^k = r^{2k} = 1, so that |r^k| = 2 and in particular, r^{-k} = r^k. Now let x = s^i r^ji = 0,1 and 0 \leq j < n be arbitrary in D_{2n}. Then if i = 0 we have r^k \cdot x = r^k \cdot r^j = r^{k+j} = r^j \cdot r^k = x \cdot r^k. If i = 1 we have r^k \cdot x = r^k \cdot s r^j = s r^{-k} r^j = sr^kr^j = sr^jr^k = x r^k. Thus r^k commutes with every element of D_{2n}.
Now let x be an element of D_{2n} which commutes with every element of D_{2n}. Suppose x = s r^a. Then we have s r^a \cdot r = s r^{a+1} and r \cdot s r^a = s r^{a-1}. Then we have a+1 = a-1 mod n, hence 1 = -1 mod n. But since n \geq 4, this is a contradiction. So x is not of the form s r^a. Now suppose x = r^a. Then we have s r^a = r^a s = s r^{-a}, and thus a = -a mod n, so 2a = 0 mod n. Thus either a = 0, so that x = 1, or 2a = nq for some positive integer q. By a lemma to a previous exercise, since 0 \leq a < n we have 2a = n and thus a = k. Hence if n = 2k \geq 4 is even, the only elements of D_{2n} which commute with all of D_{2n} are 1 and r^k\blacksquare





No comments:

Post a Comment