Exhibit an alternate presentation for Dih(2n)


Show that \langle a,b \ |\ a^2 = b^2 = (ab)^n = 1 \rangle gives a presentation for D_{2n} in terms of the generators a = s and b = sr computed in a previous exercise.

Given that a = s and b = sr and that a^2 = b^2 = (ab)^n = 1, we have s^2 = a^2 = 1r^n = (ssr)^n = (ab)^n = 1, and rsr = s(sr)(sr) = sb^2 = a = s, so that rs = sr^{-1}.
Given that a = s and b = sr and that r^n = s^2 = 1 and rs = sr^{-1}, we have a^2 = s^2 = 1(ab)^n = (ssr)^n = r^n = 1, and b^2 = srsr = ssr^{-1}r = 1\blacksquare





No comments:

Post a Comment