Deduce some properties of a group from its presentation


Let X_{2n} = \langle x, y \ |\ x^n = y^2 = 1, xy = yx^2 \rangle.
  1. Show that if n = 3k, then X^{2n} has order 6, and that it has the same generators and relations as D_6 with x = r and y = s.
  2. Show that if \mathsf{gcd}(3,n) = 1, then x satisfies the additional relation x = 1. In this case, deduce that X_{2n} has order 2. (Use the fact that x^n = x^3 = 1.)

Note that, according to the text, every element of X_{2n} can be written as y^a x^b with 0 \leq a < 2 and 0 \leq b < n. Moreover, we have x = xy^2 = xyy = yx^2y = y^2 x^4 = x^4, so that x^3 = 1. Thus X_{2n} = \langle x, y \ |\ x^3 = y^2 = 1, xy = yx^2 \rangle, and in fact we can write elements of X_{2n} as y^a x^b where 0 \leq a < 2 and 0 \leq b < 3, so that |X_{2n}| \leq 6.
  1. If n = 3k, we have x^n = x^{3k} = 1^k = 1. Since x and y are distinct, then, none of the elements y^a x^b with 0 \leq a < 2 and 0 \leq b < 3 can be equal. Thus |X_{2n}| = 6. Moreover, if we let x = r and y = s, then X_{2n} clearly satisfies the same relations as D_6.
  2. If \mathsf{gcd}(3,n) = 1, then we have either n = 3k + 1, so that x = 1, or n = 3k + 2, so that xy = yx^2 = y and thus x = 1. In either case, x = 1, so that the elements of X_{2n} are precisely 1 and y.



No comments:

Post a Comment