Find all the elements in Dih(2n), n odd, which commute with all other elements


Show that if n \geq 3 is odd, then 1 is the only element of D_{2n} which commutes with all of D_{2n}.

Recall that every element of D_{2n} is of the form s^i r^j where i = 0,1 and 0 \leq j < n. Now suppose x \in D_{2n} commutes with all of D_{2n}. If x = sr^a, then we have r \cdot s r^a = s r^{a-1} and s r^a \cdot r = s r^{a+1}, so that a+1 = a-1 mod n. Then we have 1 = -1 mod n, a contradiction since n \geq 3. Thus x is not of the form sr^a. Now suppose x = r^a for some 0 \leq a  0. If q \geq 2 we have 2a < 2n \leq qn, a contradiction. If q = 1, we have n = 2n even, a contradiction.
Thus 1 is the only element of D_{2n} which commutes with all of D_{2n}.




No comments:

Post a Comment