Find a presentation for ZZ/(n)


Find a set of generators and relations for \mathbb{Z}/(n).

We saw in a previous exercise that the distinct elements of \mathbb{Z}/(n) are precisely \overline{0}, \overline{1}, \ldots \overline{n-1}. Note that these are precisely the multiples of \overline{1}; hence \mathbb{Z}/(n) is generated by \overline{1}. Since |\overline{1}| = n, we have \mathbb{Z}/(n) = \langle x \ |\ x^n = 1 \rangle.




No comments:

Post a Comment