Generating sets of the integers as an additive group


Find a set of generators for \mathbb{Z}.

Every integer can be written as a finite sum of 1s, so we have \mathbb{Z} = \langle 1 \rangle. In particular, \mathbb{Z} is a cyclic group.
Also, suppose a and b are integers with \mathsf{gcd}(a,b) = 1. Then there exist integers x,y with ax + by = 1, so we also have \mathbb{Z} = \langle a, b \rangle.




No comments:

Post a Comment