Detecting copies of Dih(2n) in a larger group


Let G be a group, and let x,y \in G be elements of order 2. Prove that if t = xy then tx = xt^{-1} (so that if n = |xy| < \infty then x and t satisfy the same relations in G as s and r in D_{2n}).

We have xt^{-1} = x (xy)^{-1} = x y^{-1} x^{-1} = xyx = tx since x and y have order 2.




No comments:

Post a Comment